
101 J S"llds .~I,,"·r"'<J Vul. !4. :-;u. I. pp. !7-3'l. 1988
Pnnted in Great Bntaln.

OO~7bli388 Sloo+.oo
C 198H PcrgamHn Journals ltd.

DYNAMIC INTERACTION BETWEEN TWO
INTERFACE CRACKS IN A THREE-LAYERED

PLATE

TRIBIKRAM KUNDU
o.:partment of Civil Engineering and Engineering Mechanics. University of Arizona,

Tucson. AR 85721, U.S.A.

(Receil'ed 17 Fd"u(/ry 1987; in ret'ised form 8 June 1987)

Abstract-In this paper, the dyn-Imk interaction between two interface cracks, in a three-layered
plate subjected to antiplane stress fields. is analytically studied. The problem is formulated in terms
of a coupled set of integral equations. which are then solved by expanding the unknown crack
opening displacements in II complctc set of Chebyshev polynomi<lls. The method is coded in II

FORTRAN progrllm lind numeric<l1 results for II sample problem lire presented. The results show
that Ii.'r the problem studied here one cr<lck always reduces the crack opening displacement of its
neighboring crack.

I. INTRODUCTION

In recent years the dynamic analysis ofcmcks in multilayered solid materials have received
considemble ,Itlention in the literature devoted to fracture mechanics in view of the rapid
increase of coated and multiluyered plates in engineering applications. Investigators who
studied dilTerent aspects of this problem include Locber and Sih (1973), Keer and Luong
(1974), !.llIm/; ('1 al. (1975), Atkinson (1977), Srivastava cl al. (1978), Neerholr (1979), Sih
,Ind Chen (1980), Kuo (1982), Yang and Bogy (1985), Kundu (1986), Bostrl,m (1987), to
nallle a few. In all these works only one crack hus been considered in the problem geometry.
The present state of knowledge still lucks a rigorous anulyticul technique for the dynamic
analysis of the interaction among seveml interl~lce cracks.

In this paper the transient response of two interface cmcks in a multiluyered plate
under antiplane loading is analytically studied. Crack opening displacements (COOs) of
both cracks arc computed for dillcrent time-dependent loadings at the plate surl~lce. COD
is computed by both considering and neglecting the interaction elTects. Comparisons
between these two sets of results show how significantly a crack can affect the behavior of
its neighboring crack. Since the stress intensity factor (K) is directly related to COD, exactly
the same behavior would have been observed for K if it were computed instead of COD.

The analytical formulation is developed bascd on Betti's reciprocal theorem applied
to two problem geometries, one is the scattered field problem and the other is Green's
problem which is a tlawless plate subjected to a concentrated line load. Thus a set of integral
equations arc formulated with the COOs as the unknowns. Then COOs arc expanded in a
complete set of Chebyshev polynomials, The unknown coellicients of these expansions arc
obtained by satisfying the stress free boundary conditions of the crack faces. Similar
techniques were used by NeerholT (1979), Yang and Bogy (1985), Kundu (1986) and
Bostrc:lm (1987) to solve w'lve scattering problems by a single interface crack. In the problem
considered here, since there are two cracks in the problem geometry it gives risc to a set of
coupled integral equations unlike the previous works with one crack only. The coupling
terms represent the crack interaction elTects.

2. PROBLEM FORMULATION

A plate is made of three homogeneous, isotropic. elastic layers, 1.2 and 3. of thicknesses
hI. liz and h 3 as shown in Fig. I. Pi and Pi are material density and shear wave velocity of
the jth layer, respectively. Plate dimensions along the x- and z-directions are infinite. Two
Grillith cracks of lengths 2a 1 and 2azare located at the two interfaces at y = Y I(= hI) and

27



T. KLSDL'

y

Q <:) <:) Q <:I 0 <:) 0 Q 0

hI

Y3

Pi~3
~

2a2 ----I i
Y2

P!2 h2-!
--t 1 1

Pl(Jl
~2al

hl
-!

• • • • .0 • • • • 0
x

Fig, I, Geometry of the problem. A three-layered plate wntaming two interface cracks is subjccted
to an antiplane loading,

.I' ~ (= hi + h~) with a distance d between the crack centers. The two surfaces of the plate at
I' = 0 and .1'1 (= hi +h:+h,) are subjected to an antiplane stress field r

"
= I(I) as shown

in the figure. The plate and crack geometries and the surface loadings are independent of
the .:-direction.

To solve this proolem, first we need to solve two cannonical proolcms. The two
proolcms are then comoincd by Retti's rcciprocal theorem. hrst the proolcm is solved in
the frequency domain, then the transient response is ()btained oy Fourier inversion of the
spectrum.

2.1. ('al/IIollical proh!l'm I: ./Iall'/l'.I'.I' thrl'l'-larl'rI'd plate .I'lIhjectl'd to ilII ill/tiplallt' .I'tre.l'sjil'ltI
The geometry of this proolem is very similar to Fig. I, the only dilrerence is that there

is no crack at any interface. The time harmonic antirlane stress field of time depcndl:lKe
e ""I ads uniformly on the two surfal:es of the plate. The displacement field in thejth layl:r
of this problem geometry is given oy the wave equation solution

v, = II, e'k", + IJ, e ''',,' (I)

where k'l is the S-wa ve number of the jth layer. The time dependence e ,,,,I in eqn ( I) and
in all suosequent equations is implied. The unknown wettil:ients II, and IJ, can be evaluated
from ooundary and interface conditions. Expressions of A ,and 8, are given in the Appendix.

2.2. ('wlI/ol/ical prohll'm 2: a lil/t' load in a Ihrt't'-layert'djlllll'/t'.I'.I' platt'
The geometry of this problem is shown in Fig. 2. A time harmonic line load is acting

at a point P(x,,, Yp ) as shown in the figure. The solution of this problem is available in thl:
literature on wave propagations in multilayered solids (Kundu. 1986). The displ~tcement

field in thejth layer generated by this line load located at the filth layer is given oy

where

(2)

til = (k;,-k~)l"

= i(k~ -k,~,) I :

for k'l > k

for k,! < k
(3)

III is the shear modulus of the jtlt layer and J"'I is the Kronecker delta function which is I
for m = j and 0 for ttl '" j.
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Fig. 2. A point load in the three-layered plate.

Unknown coefficients Cj and DJ can be obtained from stress-free boundary conditions
and continuity conditions across the interface. Expressions of these coefficients are given
in the Appendix. Superscript G on UJ indicates UJ corresponding to Green's elastodynamic
state.

2.3. Applicatiofl (~r Betti's re£'il>rocul theorem
Let us consider two solution states Sand G. State S corresponds to the scattered field

of the original problem. So when S is added to the displacement field of the cl.tnnonicl.11
proolem I the solution state of the problem of interest is obtained. The cannonical problem
2, Green's dastodynamie state, is referred to as state G. Using Betti's reciprocal theorem
these two states can be related in the following manner:

rF~U:' dV+ rT~U:; tiS = rf~'U~ dV+ rT~;U~ dS1r Js Jv Js (4)

where P, is the.: body force per unit volume acting in the .\·,-direction, 1~ is the surface.: traction
per unit areH l.Icting in the x,-direction, and Ui is the displacement in the x,-direction.
Supe.:rscripts Sand G represent states Sand G respectively. However, the body force for
state S is zero and for state G it is equal to <5(; - i p) acting in the =-direction. i p is the position
vector of point P and; is the position vector of any point of interest. For an antipll.lnc
problem all non-zero forces and displacements act in the =-direction. So for our problem
the ge.:neral equation, eqn (4), takes the form

(5)

where U is the particle displacement and T is the shear stress. Since the problem is invariant
in the =-direction, surface integrals may be reduced to line integrals. This line integral is
carried out along a contour. shown in Fig. 3.

The integral on the left-hand side ofeqn (5) vanishes because TS is zero on C lo C~. C J•

C~ l.Ind the integrals of TSU" on It and I,- cancel each other for j = I and 2. The only
non-zero term comes from the integml on the right-hand side ofeqn (5) along the integration
paths It and I:;. After some simplification, eqn (5) is reduced to

(6)

where 4J(x) and t/J(x) are COOs of the two cracks and are defined as
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Fig. 3. Contour of the line integral (eqn (5)).

¢(x) = US(x,yn - US(X'YI )

ljJ(x) = US(.\",y~) - US(x,y" ).

The expressions for TG at Y = YI and y~ may be obtained from

and

(7)

(1''1)

(Xh)

where U~; is given in eqn (2).
I f point I' is now taken on the crack surface, the displacement of that point can he

ohtained from eqn (6) if T(;, I/)(X) and ljJ(x) are known. Comhining eqns (6) and (X) the
displacement field at xI" Yp (YI' = Y I or Y2) is obtained

(9)

where

The scattered stress field can be obtained from the displacement field of eqn (9). Then
it is equated to the negative of the incident stress field along the crack surfaces (y = y I'

txl < ill and Y = Y2.IXI < iI~, X = x-d) to obtain

and

for -(/1 < '\' < (/1 ( lOa)
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where

F,(k) = -'1~{1 +i ~"lc. (C~-D~)}
t) I' "",=",

Fz(k) = -'1~{Q~+i ;'le. (C~Q~ DZQi l
)}

eJp .",="",

F3(k) = -tl~{Q~+i i/o (C~- D~)}
J p "",="V:

Fik) = -'1Z{1 +i ';l~-: (C~Q~- DZQi. I
)}

fJ.- p ~'p ~y:

(11)

A 2• 8 z in eqns (10) and Cz• Dz in cqns (II) are delined in eqns (I) and (2). respectively.
P'lrtial derivatives of C z :'lOd D z with respect to YI' at YI' = YI and }'z are given in the
Appendix.

It can be shown that F,(k). (j = L 2. 3,4) is imaginary for all real values of k. It can
also be shown that Fz(k) is always equul to F,(k) und they upprouch zero us k -> ex.
Ilowevcr. F,(k) and F4(k) huve the folluwing asymptotic expressions:

( 12)

It should be noted here that the integrals involving F~(k) and FJ(k) represent the interaction
effects betwecn thc two cracks. In the coupled integral equutions, cqns (10), the functions
cjJ(x) and "'(x) are yet unknown.

2.4. Computation of the crack opening tiisplacem('fll jimcliotls
In ordcr to evaluate the COOs, cjJ(x) and "'(x) arc expanded in a complete set of

Chebyshev polynomials

where

<Pz.(x) =sin {211 arcsin (x/a,)}

"':.(x) =sin {211 arcsin (x/a~)}

<Pm+ I(X) =cos {(211+ \) arcsin (x/al)}

y:. ... I (x) = cos {(211 + \) arcsin (x/az)}.

(13)

(14)
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To obtain the unknown coefficients (X~ and Y~, both sides of eqn (lOa) are multiplied by
cP",(xp), then integrated from x p = -a I to a l and both sides of eqn (lOb) are multiplied by
t/!",(xp ), then integrated from Xp = a~ to a~. After some algebraic manipulation an infinite
set of linear equations is obtained to solve for (X~ and i'n

>::

L (K",~(X" + L",,,Y,,) = - 2ikJ~(A~ - B~)aIJ"'1
n= I

>::

L (M",,,(f.,,+N,,,,,y~) = -2ikdA~Q~-B~Q~I)a~(}"'1
n=l

where for m+n = even

f < {T.' (k) .,. } .,. ")_ ., ('4' __ .IJI ( . . _ . _III ( (",n

N",n - - . k-' + k'(- - J",(klh)Jn(ka,) dk-
II .- • Jll+Jld • • Il~+ill III

and for 1/1 +1/ = odd

(15)

(16)

( 17)

From eqns (16) and (17) it can be dearly seen that K and N matrices are symmetric but
the Land M matri<.:es arc not. However, Land M satisfy the following relations:

{
/YIn", for m+n = even

L,nn = . ,.
-/YI"", lor m+n = odd.

Equations (15) have infinite series in their expressions, however, they can be terminated
after a finite number of terms without introducing any significant error. Then ~n. i'n <.:an be
obtained from a linite set of linear equations and linally IMx) and 1/i(X) can he computed
from eqns (13) without any dilliculty.

3. COMPUTATIONAL ASPECTS

The main task involved in obtaining the solution of this problem is the computation
of the integral expressions of K",,,, L",,,, I"(m~ and Nm". The major dillicuity in computing
these integrals comes from the fact that a finite number of poles or singular points lie on
the real path of integration. These correspond to the roots of the denominator of the
integrands. This denominator is the surface wave dispersion function of the problem
geometry. These poles are removed from the complicated integral expressions in the same
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manner as done in a previous paper (Kundu. 1986). 'then the poles are confined to relatively
simpler integrals having the following forms:

i = I or 2 ( 18)

_i:C Jm(ka;)J.(ka j ) cos (kd) .
l. - k" dk. i.j = 1.2 or 2. I; i #- J'

(J ---p-
(19)

(20)

where I' is a pole of the integrand on the real k-axis. Integrals in eqn (18) have been
evaluated (Kundu. 1986)

m ~"

(21 )

m ~"

wh~re II:~ I is the Hankel function of first kind of order m.
Let us now try to evaluate the integrals ofeqn (19). It was shown (Kundu. 1986) that

for m ~ ".J",(ko) 1I~)(ket) vanishes at k = 0 for both i = I and 2. So for m ~ " the numerator
of the integrand of eqn (19) C:1O be writlen as

(22)

Ckarly for large k. 1I~')(ko,) eikd = O(eik(<I,~J). so it goes to zero when k takes large positive
imaginary values. Similarly II~~) e ikd becomes zero when k takes large negative imaginary
valw.:s. So integrals containing 1I~11 eikJ can be evaluated by the contour integration method
dosing the contour in the first quadrant and integrands containing f/:.;'e,kJ should be closed
in the fourth l\uadrant. But the term Hc;,)(kai) e-,kJ = O(eikl<l,--J') for large k. so contours
of the integrals containing these terms should be closed in the first quadrant if 0, > d and
in lhe fourth l\uadrant if a, < d. Following the same logic the contours of the integrals
~onlaining f/~;'(kai) eikJ should be closed in the first quadrant if a, < d and in the fourth
quadrant if 0, > d. If m ~ fl. J. (instead of Jm ) should be expressed in terms of Hankel
fun~lions and then those expressions can be integrated by the contour integration method
as discussed above. Integrals ofeqn (20) can also be evaluated following the same technique.
Final results of these contour integrations are given below

where. for m ~ "

SAS H: l-c

Ie = i(l, +/2 +/)

I, = II + 12-I)

for Q j > d

for Qj < d

(23)

(24a)

(24b)



and for m ~ fI

Tabk I. Mah:rial rro~rtl~s and Jim~nSlOnsof tht: spt:cim~n

La\t:r La~~r Thld.. nL·SS. Dt>nsitv. S-Wavc speed.
numht>r m ..ltcriJI II (mm) I'lg~m ') fJ j km s ')

Copper 1).5 :-1.'1 ~.J2

St-:el 05 ~'1 .1_~O

.1 Quartz 1J5 7..77

I: = r.J~Jm(paJ)H~,I)(P(iI) e'l'.J for (if> d

1.0 for (/, < d

(2..kl

(25a)

for (i, > d

for 0, < d

for (/, > d

for (/, < d.

(25c)

The nU:lhod discussed aoove has oeen illlplemenll:d in a FORTRAN program. Results
for a sampk case an.: pn:sentcd in this scction. Thc platc specimcn for which llllll \l,: rica I
n:sults an.: given is made ofcoppcr. sted and quartz. A 2 mm crack is loc"1Led ut the copper
sled inlerface and a sCl:ollll crack of kngth 4 mm is located ut the quartzsted jntcrl~H:C. The
distance hetween the centers of the t\VO cracks is 0.5 mm. Properties of the plate materials
arc given in Tahle I.

In tht: results presellted in Figs 4 H. It.:ngth. time and frequency units arc in mm. )is
and M Hz. respectively.

The poles of the intcgrands on the n:al k-axis arc shown in Fig. 4. It should be noted
here I hat the numher of poles increascs \vi th increasing fre4uency and so docs the computing
Ct)sl.

Proflles or CODs for ditl"crcnt exciting frequcndes arc shown in Fig. 5. The rate of
conwrgence of the propost:d method cun be observed in this flgun.:.:x" and ;'" of cqn (I J)

~
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Fig. 5. Spcctral at1lplitudes (in nlllt'/Is) of crack opening displaeemenls of the 2 mm long crack al
dilli:rcltt cxciting frclluencies. Lefl·hand culut1ln: the lop two figures arc for 0.04 MIll. and the
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Fig. 6. Crack opening displacements at Ihe center of the crack for the impact loading Ceqn (26))
wilh duration t == 5 /IS. The top row is for the 2 mm crack lind the bottom row is for the 4 mm
crack. Left·hand column: COD spectral ampliludes in mm-/ls. Righl·hand column: COD lime
histories in mm. In eaeh figure the bold curve represents the actual COD and the thin curve

represents the COD of the same crack in the abllence of the other crack.



•;1> T. Kt.:SDl;

~ ~
0 0

~ ~
0 0

0
0
w

0.50 1.00 8.00 18.00 24.00

~
0
"'!
0

i! ~
0 0

0
0
U

~ ~
"b.00 0.50 1.00 "boo 8.00 16.00 24.00

FREQUENCY (MHZ) TIME (MICRO SEC J

Fig. 7. S.Il11e as Fig. I> but the applied load is a step load (<:4n (ZX» with rise tillle r Z 2.5 ItS.

arc ohtained by solving eqns lIS). Logically, it may be stated that a huge number of terms
in the expansion of CODs (p(x) and "'(x) should give accurate results. But then the sizc of
the K, I"~ M and N matrices increases and so does the computing cost However. it can he
seen in Fig. 5 that it is not necessary to considcr more than live terms in the COD expansion
for fn:qucndcs up to I MHz. In the top two figurcs of the Icft-hand column of Fig. 5 the
amplitudc of the COD ("(x) is plotted for an exciting frequency ofO.()4 MHz. The top figure
is for a three-term expansion and the second ligure. for a five-term expansion. The bottom
two ligures of the left-hand column show the amplitudc of l/)(x) for three- and live-term
expansions at a frequency of 0.6 MHz. Clearly for both these frequencies the three-term
expansion of (jJ(x) C.ln produce accurate results. In the right-hand column the COD (!>lx)
is plotted for a frequency of I M Hz for two-. three-, four-. and live-term expansions of
(/)(x). For this frequency it can be said that after four- or live-term expansions the result
convcrges. Similar convergence is observed for ,,,(x). For all plots of Fig. 5, the Fourier
transform F(w) of the exciting load has been equated to I.
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Fig. 8. Same as Fig. 7 hut the rise time (,/Z) of the step load is (/IS.
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The response of the two cracks to impact and step loadings are shown in Figs ~8. For
impact loading the load starts from zero. then reaches a peak value and finally drops down
to zero. In step loading the load starts from zero and gradually attains a maximum value.
The following functions are considered as loading functions.

Impact loading

32P [{ 6, (, l2)}. {6'.(, 12)}]F(w) = ,~W3 - w +i ,-- w2 e'w,_ w +1 ,-- w2 .

Step loading

16P['~ i (, 24). I' 2{.( 12 ,) 6'}]F(w) = - -1tt)(w) - - ,'+ -, e''''''+ - 1 ----, -,' - - .
,~16 w J w· w 3 w' W

(26)

(27)

(28)

(29)

In the above equations P defines the peak value of the plate surface excitation stress. In
subsequent calculations. P is set equal to I kN mm . 2. , is the duration of the impact load.
The sharpness of the impact can be increased by decreasing, but keeping P constant. The
rise time of the step load is equal to ,/2. Here too a sharp rise in loading can be modeled
by decre;'lsing , but keeping P constant. Results arc given for, = 5 and 2 lIS.

In eqn (29) F(w) is not suitable for numerical evaluation because it contains a delta
function ,lnd a singular term which behaves like I/w ncar w = O. This dilliculty is avoided
by separating the static part and shirting the response history vertically as discussed by Mal
1'1 til. (19H4).

In Figs 6-8 COOs at the center of the 2 and 4 mm cracks arc plotted in the top and
bottom rows, respectively. Displacement spectra are plotted in the lert-hand column and
time histories in the right-hand column. Time histories arc obtained numerically by inverting
lhc response spectra using FFT (fast Fourier transform) routine. In all these ligures two
curves arc plotted. one with a bold pen and the other with a thin pen. The bold curves arc
actual plots of COD and the thin curves arc the COD plots when the interaction between
the two cracks is neglected. In other words thin curves represent the response of one crack
when the other crack is absent. They are obtained by setting the coupling matrices Land
AI equal to a null matrix.

In Fig. 6 COD for the impact load with duration, = 5 JLS is shown. The difference
between the thick and thin curves is more for the 2 mm crack (top row) than the 4 mm
crack (bottom row). It is justified since the effect of the larger crack on the smaller crack
should be more than the effect of the smaller crack on the larger crack. In the time history
plot of the top row it can be seen that in approximately II lIS the bold curve oscillates three
times and the thin curve oscillates four times. The presence of the second crack reduces the
stitfness of the plate and hence the natural frequency of vibration of the crack opening is
reduced. It can also be seen that the maximum crack opening increases when the interaction
effect is neglected. So for the model studied here, the presence of the second crack reduces
the possibility of the propagation of the first crack.

The response of the two cracks for step type of loading with rise time ,/2 = 2.5 lIS is
shown in Fig. 7. Here again the bold curves represent the actual response and the thin
curves represent the crack response in the absence of the other crack. Here also the greater
difference between the two curves is observed for the smaller crack. In the top row in about
10 lIS the thick curve oscillates three times and the thin curve oscillates four times. Thus
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the decrease in stiffness and natural frequency in the presence of the second crack can be
observed in this figure also. The presence of the second crack significantly reduces the
maximum COD of the smaller crack. Another interesting feature of the top figure should
be observed here. the bold curve oscillates for a longer period of time than the thin curve.
It is probably due to the fact that the free surfaces of the second crack restricts to some
extent the geometric dissipation of energy from the first crack.

Figure 8 is similar to Fig. 7. the only difference here is that the rise time for the step
load is I liS instead of 2.5 ps. Hence the dynamic effect in this figure is more than that in
Fig. 7. Other observations. i.e. differences in the plate stiffness and COD magnitudes. in
the presence and absence of the second crack are similar to the previous ligure.

5. CONCLUSIO~

In this paper the interactions between two interface cracks in a three-layered plate is
studied analytically. when the plate is subjected to a time-dependent antiplane shear stn:ss
field. This new technique is an extension of the technique used to solve the single interface
crack problem (Kundu. 1986). The method developed here is found to be \cry etlicient.
quickly converging to a negligible error.

A sample problem involving two interface cracks in a three-layered plate is solved by
this technique. The numerical results show that the dynamic reponse of a crack is sig­
nificantly influenced by the presencc of a neighboring crack if the neighboring crack is
longer. For the plate model studied here it is found that the presence of one naek always
reduccs the COD of its neighboring crack.

Adf/O\l'It"~'/"mt'f/1 This research was supported hy lhe N;lIional S.:ience hllllldalion under C">rttracl NUllIher
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APPENDIX

Expressions of A j' B,. C, and 0, (j = I. 2. J I of eqns (I) and (~) arc given here. P'lrtial derivatives of C: and
0, with respect to Yr (see eqns (II» are also delined here



Dynamic interaction bo:two:en two interface cracks in a three-layered plate

A
1
=. F(w) (I ~tJq,P~)

IP,fJ,w j ....qqi

F«,) (<i,-IP,))
H, = ~B,w -j~qq;-

A, = ~~: ..t.(I + P,,) + H,(I- P"l;
-</,

H, =~':A ,(I-P,,) +8,( 1+ P,,):

A, = ,,1_ :A, ( I + P" ) + H ,( I - P,,):-<i,
H, =~:A,(I-P::)+8,(I+P,,)}

</, = e~r (ik,/I,)

k"ll,
P" = -,..

k"ll,

I, ., . I I' [I . E' I . I'r ;_··,,(1-</,)[(1+1/,)+1',:(1-1/;) +1',,( +</i) ( -</,)+ ,.( +(/,) ,
...,/,</,

I ., . .. l' . I'.<1'=.,' :(I-</;)[(I+I/,)-/',,(I"'ull+I',,(I+l/il[(I-I/,)- ,,(I+',;l, .
...</,</,

(AI)

(I\~)

1-'(1'1) is Ihe Fourier Iransf"rm of the applied stress field on the plale h"lIndary and "I is Ihe frl·qlleney. /',./1,. II,
;Ind k., arc detined in Ihe text.

Now (', a 11<1 1>, "I' eqn (~) arc ddined as

I-' ··1,'
C, ,,- ;, ,.H ' ((I:, - I-',)I'JJ, ~ (I-', + /.',)/' ,:

I-' -I-'
1>, ,-, (j, I;,U' :(1:, ,,/.',,/,(j,-.(I:,+I-'.)I',:

C, = 1>, -= "'~.' (C: -/I, . II,)
'I,«(j; - I) 'I:

C , -= D,(!,: = . '/:" (C:(j: -/l,(!, '+ 1':)
'1,( I· (! i) '/:

.\I = (F,+/.',)(F,+F.)-Qj(F,-F,)(F,-F,)

1', = /I,I/,(I-Q;)

F, = /1,11:(1 +Q;)

1-', -= /I,./,(I-Q;)

F, = /1:11,(1 +(.1;)

'1, is ddined in elln (3).
Partial derivatives of C, .\nd D, with respect to Yr have the following forms:

(1\.1)

(/\4)

(A5)

where M. F,. F,. Flo F,. Q,. 1', and p, arc defined in eljns (1\4). Clearly if YP = .1', then 1', = I. p, = Q, and if
,1',- = .1': then 1', = Q,. p: = I.


